Processed Aloe vera Administered Topically Inhibits Inflammation

ROBERT H. DAVIS, PHD*
KENNETH Y. ROSENTHAL†
LINDA R. CESARIO‡
GREGORY A. ROYUT†

Aloe vera preparations were evaluated for topical anti-inflammatory activity using the croton oil-induced edema assay. The results show that small amounts of A. vera given topically will inhibit inflammation induced by a moderate amount of irritant. In general, the decoction of Aloe was more effective than the colored Aloe (with anthraquinones). A 4.47% inhibition of inflammation was obtained by 5% decolorized irradiated Aloe. These results may be used as a baseline to assess the biologic activity of A. vera in the treatment of inflammation by podiatric physicians.

Aloe vera has unique biologic properties. It reduces inflammation but also improves wound healing. Topically administered Aloe inhibits edema over a dose range of 0.25 to 1%. In the absence of anthraquinones, orally administered A. vera has virtually no effect upon croton oil-induced edema. Conversely, when anthraquinones are present, A. vera given orally reduces inflammation 54%. It is hypothesized that anthraquinones aid in the biochemical transport of the active components in Aloe to the site of inflammation. Unlike steroids, Aloe has its optimal action in the local inflammatory phase, as opposed to the chronic fibrosis phase. The possibility of a synergistic relationship between glucoconjugates and A. vera must be evaluated in future studies.

Over the past 20 years, an intense search for the active ingredients in Aloe has been carried out. A good deal of the biologic activity may be found in the carbohydrate or glycoside fraction. The major components could be a phosphomannose, or a sugar acid, or even gibberellin. However, the authors believe that a strong synergistic relationship exists between the carbohydrate compounds and other active substances in Aloe, such as vitamins and amino acids. Certain vitamins and amino acids show strong anti-inflammatory activity in their own right. These substances may have a triggering effect on enzymes and carbohydrates activity needed for anti-inflammation. Thus, the authors have confined their study to the "active team" of A. vera, rather than individual extracts of the plant gel.

The purpose of this study is to compare the anti-inflammatory activity of processed (irradiated) A. vera with the fresh Aloe in the presence (colored) and absence (decolorized) of anthraquinones. The croton oil-induced edema swelling model provides an effective way of measuring the topical activity of the various preparations of A. vera used in podiatric medicine.

Materials and Methods

Adult female ICR mice (20-30 gm, 13 animals/group) were given 25 mg/ml croton oil, applied topically on both surfaces of the right ear. The concentration of croton oil in acetone was 2.5 mg/ml. The irritant was applied by means of a Hamilton microsyringe. The left ear remained untreated and served as a control. Acetone alone did not induce any changes in ear weight. The peak swelling oc-

* Professor of Physiology, Pennsylvania College of Podiatric Medicine, Eighty at Race St, Philadelphia, PA 19107.
† Submitted during second year, Pennsylvania College of Podiatric Medicine, Philadelphia.
‡ Hamilton Company, Reno, NV.
carried 6 hr later, at which time the ear swelling was measured by obtaining a 6-mm punch biopsy specimen from the inflamed and the control ears. The ear tissue was weighed to the nearest 0.01 mg. The difference in weight between the inflamed and control ear represented the degree of swelling for each group. Each group of animals had its own internal control. Topical applications of 5% fresh, processed, and irradiated processed A. vera were applied 30 min after the croton oil to minimize any non-specific interaction between the irritant and A. vera. Colorized (with anthraquinones) and decolorized (without anthraquinones) Aloe were evaluated for each preparation. Ear weight differences were recorded, and the percentage of inhibition of swelling was obtained for each Aloe preparation. The Student's t-test was used to obtain the significant difference of each test group in reference to the irritant control.

Three sets of A. vera preparations were evaluated for anti-inflammatory activity. The fresh A. vera was obtained by removing the gel from the leaves. The pulp was removed from the gel. The anthraquinones were either left in (colorized) or removed (decolorized), and the preparation was freeze-dried to a powder and sealed in air tight containers. The processed, irradiated Aloe was simply the freeze-dried processed Aloe irradiated by gamma cobalt irradiation at 1 Mireda.

Results and Discussion

Advances have been made over the last few years in the development of Aloe concentrates for medical and cosmetic formulations. Since Aloe gel is in its natural state is only 0.5% solids, water must be removed without damaging the active biologic ingredient. Also, the A. vera as a liquid must be preserved, and bacteria must be prevented from attacking the Aloe. Since A. vera is a composite of many components, a reliable biologic assay must be found to assess the biologic activity of the Aloe gel concentrates for use in podiatric medicine. A quality A. vera must be obtained and used at the correct concentration to forecast with accuracy the medical and therapeutic effectiveness in treating inflammation, wounds, and arthritis.

Topical administration of 25 mg/ml croton oil produced a 6% increase in punch biopsy ear weight over 6 hr. Topical administration of 5% decolorized fresh A. vera significantly inhibited inflammation from croton oil 38.1 ± 3.6% (p < 0.01). The 5% colorized fresh A. vera inhibited ear swelling only 7.3 ± 1.1% (p > 0.5) (Table 1 and Fig. 1). The presence of anthraquinones on topical application did not favor anti-inflammatory activity, possibly because of their slight irritant properties to the skin.

Experience has demonstrated, however, that anthraquinones are required for oral activity. Their presence may be needed to absorb and carry biologic Table 1. Topical 5% A. vera inhibits Croton Oil-induced Inflammation

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Ear Edema* (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Croton Oil (25 mg/ml)</td>
<td>6.8 ± 0.8</td>
</tr>
<tr>
<td>Color</td>
<td>6.3 ± 1.0</td>
</tr>
<tr>
<td>+ Fresh Aloe</td>
<td>4.2 ± 0.4</td>
</tr>
<tr>
<td>Decolor</td>
<td>6.0 ± 0.3</td>
</tr>
<tr>
<td>+ Processed Aloe</td>
<td>4.2 ± 1.0</td>
</tr>
<tr>
<td>Color</td>
<td>6.0 ± 0.3</td>
</tr>
<tr>
<td>+ Irradiated Processed Aloe</td>
<td>4.8 ± 0.6</td>
</tr>
<tr>
<td>Decolor</td>
<td>2.4 ± 0.3</td>
</tr>
</tbody>
</table>

*Edema after 4 hours, 13 animals/group, **p < 0.02, ***p < 0.001.

Figure 1. Percentage of inhibition of croton oil-induced ecams by topical 5% A. vera.

*Key Pharmaceuticals, Miami, FL.

Journal of the American Podiatric Medical Association
complexes in Aleo to the site of inflammation. Colored and decolorized processed A. vera inhibited inflammation 1.8 ± 1.8% and 8.8 ± 1.4%, respectively. These values were not significant at the probability level of >0.1. However, it is likely that increasing the topical dose above 5% would yield significant biologic activity. When the processed A. vera was irradiated, the decolorized Aloe reduced colitis-induced edema 47.1 ± 6.5% (p < 0.021). The irradiation of Aloe eliminated the influence of bacteria and had a significant influence on the biologic activity.

Even the colored Aloe showed a 25.4 ± 3.7% inhibition even though the value was not significant at the 95% confidence limit. The small amount of gamma irradiation used (1 Mrads) did not destroy the active biologic compounds in Aloe. However, irradiation did appear to eliminate the bactericidal influence, since processed Aloe without irradiation was less active. Evaluation of A. vera preparations at low doses allows Aloe gel to be better understood and reliably assayed so that it can be used in treatment.

Summary

The topical influence of A. vera on inhibiting colitis-induced ear swelling provides a valuable tool for evaluating the biologic activity of Aloe concentra
tes, extracts, and constituents in small amounts for pediatric medical use. Using the coefficient of standard error variation around the mean, the authors calculated a rough index of experimental error for the study to be 13.3 ± 0.6%. Thus, this reliable assay can be used to correlate the chemistry of Aloe, with its biologic activity, to obtain beneficial treatment.

Acknowledgments. Jerry Brown, Sr., Jerry Brown, Jr., and Thomas B. Brown of Florida Food Products, Inc., for supplying the specific Aloe preparations used in this study.

References