Short report

Antifungal activity of *Aloe vera* leaves

Oana Rosca-Casian a,⁎, Marcel Parvu a, Laurian Vlase b, Mircea Tamas c

a Department of Biology, Faculty of Biology and Geology, “Babeș-Bolyai” University, 42 Republicii Street, 400015 Cluj-Napoca, Romania

b Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, “Iuliu Hatieganu” University of Medicine and Pharmacy, 12 Ion Creangă Street, 400010 Cluj-Napoca, Romania

c Department of Pharmaceutical Botany, Faculty of Pharmacy, “Iuliu Hatieganu” University of Medicine and Pharmacy, 12 Ion Creangă Street, 400010 Cluj-Napoca, Romania

Received 14 July 2006; accepted 23 November 2006
Available online 6 February 2007

Abstract

Aloe vera fresh leaves hydroalcoholic plant extract was tested against the mycelial growth of *Botrytis gladiolorum*, *Fusarium oxysporum* f.sp. *gladioli*, *Heterosporium pruneti* and *Penicillium gladioli* on Czapek-agar medium. The minimum fungicidal concentration (MFC) varied between 80 and 100 μl/ml, depending on the fungal species.

© 2007 Elsevier Inc. All rights reserved.

Keywords: *Aloe vera*; Antifungal activity; Phytopathogenic fungi

1. Plant

Aloe vera L. Burm.f. (Liliaceae) leaves were harvested from the greenhouses of “Alexandru Borza” Botanical Garden in Cluj-Napoca.

2. Uses in traditional medicine

Traditionally, *A. vera* has been used in ointments and creams to assist the healing of wounds, burns, eczema, and psoriasis [1].

Due to its content in anthraquinone glycosides, *A. vera* is externally used for cicatrisation and internally as laxative. *A. vera* hydroalcoholic plant extract is also part of some make-up products with cicatrisation effect, due to its mucilage content [2]. It has been also reported to have antifungal properties [3].

3. Previously isolated constituents

A. vera is reported to contain mono- and polysaccharides, tannins, sterols, organic acids, enzymes, saponins, vitamins and minerals [1].

The main active constituent of *A. vera* plant extract is aloine, an anthraquinone heteroside [4].

⁎ Corresponding author. Tel./fax: +40 2 6443 1858.
E-mail address: casioana@yahoo.com (O. Rosca-Casian).
4. Tested material

A. vera fresh leaves aq. ethanol extract.

5. Studied activity

Antifungal activity by agar-dilution method [5], the quantity of aloine by a high-performance liquid chromatography method coupled with mass spectrometry (LC/MS/MS) [6] and the MFC. The percentage of mycelial growth inhibition \(P \) was calculated by the formula \(P = (C - T) / C \times 100 \), where \(C \) is the diameter of the control colony and \(T \) that of the treated ones [7].

6. Used microorganisms

The fungal species listed in Table 1, isolated from ornamental Iridaceae.

7. Results

The results are reported in Table 1. Sample chromatograms of aloine from *A. vera* plant extract are presented in Fig. 1a (the UV trace at 354 nm) and Fig. 1b (the MS signal). The retention time for aloine was 3.15 min. Due to

<table>
<thead>
<tr>
<th>Fungi</th>
<th>Aloe vera extract (µl/ml)</th>
<th>Colony (^a) diameter (mm)</th>
<th>(P) (^b) (%)</th>
<th>Standard error</th>
<th>Diflazon (^c) (µl/ml)</th>
<th>Colony (^d) diameter (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>B. gladiolorum</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>65</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>C(^e) 65</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>21</td>
<td>67.69 ±0.44</td>
<td>20</td>
<td>40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>60*</td>
<td>3</td>
<td>95.38 ±0.36</td>
<td>60*</td>
<td>19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>80*</td>
<td>0</td>
<td>100</td>
<td>80*</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F. oxysporum f.sp. gladioli</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>68</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>C(^e) 68</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>63</td>
<td>7.35 ±0.1</td>
<td>20*</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>40*</td>
<td>26</td>
<td>61.76 ±0.26</td>
<td>60*</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>80*</td>
<td>4</td>
<td>94.12 ±0.33</td>
<td>80*</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100*</td>
<td>0</td>
<td>100</td>
<td>100*</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H. pruneti</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>C(^e) 15</td>
<td></td>
</tr>
<tr>
<td>40*</td>
<td>5</td>
<td>66.67 ±0.22</td>
<td>20*</td>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>80*</td>
<td>2</td>
<td>86.67 ±0.22</td>
<td>60*</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100*</td>
<td>0</td>
<td>100</td>
<td>100*</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P. gladioli</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>C(^e) 13</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>10</td>
<td>23.08 ±0.22</td>
<td>20</td>
<td>11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>40*</td>
<td>6</td>
<td>53.85 ±0.1</td>
<td>60</td>
<td>11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>80*</td>
<td>2</td>
<td>84.62 ±0.21</td>
<td>100</td>
<td>11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100*</td>
<td>0</td>
<td>100</td>
<td>120</td>
<td>11</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(\text{a Mycelial growth in presence of } A. vera \text{ extract, 5 days after inoculation.} \)

\(\text{b Mycelial growth inhibition in presence of } A. vera \text{ extract.} \)

\(\text{c Antimycotic drug.} \)

\(\text{d Mycelial growth in presence of Diflazon, 5 days after inoculation.} \)

\(\text{e } C \text{ 70% aq. EtOH.} \)

\(^*P<0.001.

\(\text{–= Absent.} \)

\(^a\) Mycelial growth in presence of *A. vera* extract, 5 days after inoculation.

\(^b\) Mycelial growth inhibition in presence of *A. vera* extract.

\(^c\) Antimycotic drug.

\(^d\) Mycelial growth in presence of Diflazon, 5 days after inoculation.

\(^e\) *C* 70% aq. EtOH.
enhanced sensitivity and selectivity of MS/MS over the UV detection, we have chosen to use it for quantification of aloine in *A. vera* plant extract.

A quantity of 0.017705 mg aloine/ml *A. vera* plant extract was determined by HPLC method.

8. Conclusions

The total hydroalcoholic plant extract obtained from *A. vera* fresh leaves had antifungal activity against the mycelial growth of *B. gladiolorum*, *F. oxysporum* f.sp. *gladioli*, *H. pruneti* and *P. gladioli*, compared to the control (70% aq.EtOH). The MFC of plant extract was 80 μl/ml in case of *B. gladiolorum* and 100 μl/ml in case of *F. oxysporum* f.sp. *gladioli*, *H. pruneti* and *P. gladioli*. The antifungal activity was compared to Diflazon (antimycotic drug).

Our results bring new information to the literature data about the antifungal activity of *A. vera* plant extract against the mycelial growth, on Czapec-agar medium, of phytopathogenic fungi isolated from ornamental plants.

Acknowledgements

This study was financially supported by the Romanian Ministry of Education and Research from the CNCSIS 10/81/2005 project.
References